Systemic approaches to modifying quinolinic acid striatal lesions in rats.

نویسندگان

  • M F Beal
  • N W Kowall
  • K J Swartz
  • R J Ferrante
  • J B Martin
چکیده

Quinolinic acid (QA) is an endogenous excitotoxin present in mammalian brain that reproduces many of the histologic and neurochemical features of Huntington's disease (HD). In the present study we have examined the ability of a variety of systemically administered compounds to modify striatal QA neurotoxicity. Lesions were assessed by measurements of the intrinsic striatal neurotransmitters substance P, somatostatin, neuropeptide Y, and GABA. Histologic examination was performed with Nissl stains. The antioxidants ascorbic acid, beta-carotene, and alpha-tocopherol administered s.c. for 3 d prior to striatal QA lesions had no significant effect. Other drugs were administered i.p. 1/2 hr prior to QA striatal lesions. The following were ineffective in blocking QA excitotoxicity: allopurinol, 50 and 100 mg/kg; ketamine, 75 mg/kg; nimodipine, 2.4, and 10 mg/kg; baclofen, 10 mg/kg; 2-amino-5-phosphonovalerate, 50 mg/kg; and 2-amino-7-phosphonoheptanoate, 50 mg/kg. Oral taurine administration for 4 weeks resulted in significantly increased levels of brain taurine but had no significant effect in blocking QA neurotoxicity. Systemic administration of the noncompetitive N-methyl-D-aspartate (NMDA) antagonist MK-801 resulted in a dose-responsive protection against QA toxicity, with complete block at a dose of 4 mg/kg. If the pathogenesis of HD involves QA or another excitotoxin acting at the NMDA receptor, it is possible that MK-801 could retard the degenerative process.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Long-term functional consequences of quinolinic acid striatal lesions and their alteration following an addition of a globus pallidus lesion assessed using pharmacological magnetic resonance imaging.

The present study tested the hypothesis that lesion to the rat globus pallidus (GP) can "normalize" the functioning of the basal ganglia-thalamocortical circuits in striatal-lesioned rats by assessing the functional connectivity of these regions using functional magnetic resonance imaging (fMRI). Changes in brain activation following systemic administration of amphetamine were assessed in (1) r...

متن کامل

Striatal dopamine levels and changes in mitochondrial function following chronic 3-nitropropionic acid treatment in rats

An irreversible inhibitor of complex II in the mitochondria, 3-nitropropionic acid (3-NP), induces bilateral striatal lesions with many neuropathological features of Huntington’s disease (HD) in rats. It is widely used as a model of HD. Chronic systemic treatment of 3-NP for 4 days in rats (10, 15 and 20 mg/kg) caused a significant dose-dependent reduction in succinate dehydrogenase activity, w...

متن کامل

Striatal dopamine levels and changes in mitochondrial function following chronic 3-nitropropionic acid treatment in rats

An irreversible inhibitor of complex II in the mitochondria, 3-nitropropionic acid (3-NP), induces bilateral striatal lesions with many neuropathological features of Huntington’s disease (HD) in rats. It is widely used as a model of HD. Chronic systemic treatment of 3-NP for 4 days in rats (10, 15 and 20 mg/kg) caused a significant dose-dependent reduction in succinate dehydrogenase activity, w...

متن کامل

Synaptic localization of striatal NMDA, quisqualate and kainate receptors.

Striatal binding of labeled glutamate to N-methyl-D-aspartate (NMDA) receptors, D,L-alpha-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid (AMPA) to quisqualate receptors and kainate to kainate receptors was examined in rats which had received unilateral decortications or unilateral striatal quinolinic acid lesions. One week after decortication, there were no significant changes in NMDA, qui...

متن کامل

Differential effects of lesions of the dorsomedial and dorsolateral caudate-putamen on reaction time performance in rats.

In order to investigate the role of the dorsomedial and dorsolateral caudate-putamen (CPu) in movement initiation of rats, we examined the effects of quinolinic acid lesions (30 nmol in 1 microliter) in these striatal subregions in a simple reaction time task. Results show that lesions of the dorsomedial, but not of the dorsolateral CPu increased reaction times. These findings provide further e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 8 10  شماره 

صفحات  -

تاریخ انتشار 1988